
GE6151 COMPUTER PROGRAMMING
LECTURE 2

Prof. Dr. M. Paulraj PhD.,
SRIT
Coimbatore-10

Basic features of c

C is a Structured programming language.

Programmer can concentrate only on the problem at hand

and not about the machine.

C language claim to be machine independent.

C language is flexible, simple and easy to use.

C language is based on modular function concepts.

C is a middle level language.

Salient Features of C

C language is derived from ALGOL (ALGOrithmic Language).

C language has both program efficiency and machine efficiency.

C language precedes ‘B’ Language which was developed by Ken

Thomson.

C language was developed by Dennis Ritchie with the main features

derived from ALGOL, B and BCPL languages.

C language was developed by Dennis Ritchie and Ken Thomson at

At&T Bell Laboratories.

Preceders of C

Who developed C?

#include<stdio.h>

void main(void)

{

printf(“Hi Good Morning”);

return;

}

A Simple program in C

Pre compiler directives

Main functions

Source Program

Word Processor

Keyboard

Source Program Compiler Object Program

Linker Executable Code

Loader

CPU

Memory

Input

Output

The original program written in a high level language is called the

source program.

A compiler is a program that scans the source program and check

whether the source program has followed the high-level language’s

syntax rule.

If the program is error free, it is converted into machine language

instructions called object program. If the program contains any

syntax error the compilers informs the same to the user.

The compiled program must be linked with operation codes provided

by the high-level language developer using a liker program. When the

program is linked, the object program receives the run time

information such as memory addresses where variables and codes

will be stored. The linker program provides a complete machine

language program called executable code.

The executable code can be now loaded into the computer memory

and a direction must be given to the CPU to begin the execution. As

the program is executed, it takes the one or more input from the

user and sends the result to the user.

PRE PROCESSOR DIRECTIVES

These are special instructions to the compiler.

They instruct the compiler how to prepare the program for
compilation.

The most important pre processor directive is #include statement.

The #include command is used to include the header files at the time
of compilation.

A header file contains declarations and macro definitions being
shared between several source files. Header files are included in a
source program to supply the definitions and declarations we need to
invoke the system calls and libraries.

PRE PROCESSOR DIRECTIVES

You can create your own header files which may contain declarations
for interfaces between the source files of your program. In C, the usual
convention is to give header files names that end with `.h'.

Both user and system header files are included using the pre-
processing directive `#include'. It has two variants:

#include <file>
This variant is used for system header files. It searches for a file
named file in a standard list of system directories. You can prefix
directories to this list with the `-I' option

#include "file"
This variant is used for header files of your own program. It searches
for a file named file first in the directory containing the current file,
then in the same directories used for <file>.

The standard C library is defined by the ANSI C standard and is
composed of the functions, definitions and macros that are declared
in fifteen header files. Some of the header files are:

#include<stdio.h>
#include<stdlib.h>
#include<math.h>
#include<limits.h>
#include<float.h>
#include<string.h>
#include<ctype.h>
#include<time.h>

GLOBAL DECLARATIONS

This section defines the variables, functions that are visible or

accessible to the whole program.

Every C program should have a function named main.

Execution of a program begins only at main (It is the starting point).

The main function has two divisions namely: Local definition section

and statement section

The definition section should be at the beginning of the main function.

The variables declared inside the main function are local to the main

function and they are not visible to other functions.

The statement section contains the instructions to the computer to

perform various data manipulation operations.

The key word main must be followed by parentheses.

The set of statements belonging to the main function are enclosed

within a pair of braces.

MAIN FUNCTION

Alphabets:

A,B,…,Z, a,b,…,z

Special Symbols

CHARACTER SET OF C

~ apostrophe

! Exclamation

@ at the rate of

Hash

% Percentage

^ Caps Mark

& ampersand

* Star

(C open bracket

) C Closing bracket

{ Left curl bracket

} Right curl bracket

[left square bracket

] Right Square Bracket

_ Under score

- Minus

+ Plus

= Equal to

‘ Single Quote

“ Double Quote

Digits 0,1,2,3,4,5,6,7,8,9

| Vertical bar

/ Slash

\ Back slash

: Colon

; Semi colon

. Period

, Comma

< Less than

> Greater Than

Note: Symbols other than these are not allowed in C.

IDENTIFIERS

Identifiers are used to name data, variables and other objects in the
program.

Good identifier names should be short and descriptive.

The identifier name must start with an alphabetic character or
underscore character.

Must consist only alphabetic characters, digits or underscore.

First 31 characters of an identifier are significant.

The identifier must not be a C keyword.

C distinguishes between upper and lower case characters.

The system uses identifiers that have an underscore as the first

character. For this reason it is advisable not to use the underscore as

the first character.

Examples for Identifiers:

total

TOTAL

sum

SUM

member

cost

mark

student_id

i

j

K

sum_123

s1234

_total

The following are not

valid identifiers

total$

1apple

apple=2

+apple

distance in km

long

short

Reserved words (32)

auto double if static
break else int struct
case enum long switch
char extern near typedef
const float register union
Continue far return unsigned
default for short void
do goto signed while

Data values that cannot be changed during program execution.

CONSTANTS

 The programs manipulate data. Data are stored in the

computer’s internal memory called “cell”.

 A cell is a section of memory that can store one data item
of a particular type at time.

DATA TYPES

STANDARD DATA TYPES OF C

void

int

char

float

Void Data Type

This data type has no value.

Used for assignment operation.

Can be used as a generic data type (in the case of

pointers).

• A number without a decimal point

• C supports three different sizes of int data type :

short int, int, long int

• The type also defines the size of the field in which the data is
stores.

• The size of any data type can be found using the “sizeof”
operator.

• For any machine the following relation is always true.

• sizeof(short int) <= sizeof(int) <= sizeof(long)

• Each integer type can be further defined as signed integer or
unsigned integer.

• The signed integer can have positive or negative number while
the unsigned integer can have only positive number.

int DATA TYPE

1. An integer constant must have at least one digit.

2. It must not have a decimal point.

3. It may be positive or negative.

4. If no sign precedes an integer constant is assumed to be positive.

5. No commas or blanks are allowed within an integer constant.

EXAMPLE:

12 -12 2341 -12321 -98709L

76543LU

Rules for Constructing Integer constant

An integer constant can be represented as an octal or a hexadecimal or as a

decimal integer constant

Example:

Decimal Integer Constants:

-12 123 123L 134LU

Octal Integer Constants:

An Octal integer is an integer constant formed with the numerals 0-7. A zero

should prefix the octal integer constant .

Example:

-012 0123 0123L 0134LU

Hexadecimal Integer Constants:

An Octal integer is an integer constant formed with the numerals 0-9 and

alphabets A to F. A zero and the letter ‘x’ or “X” should prefix the hexadecimal

integer constant .

Example:

-0x12 0x123 0x123L 0x134LU

Type Bytes Minimum value Maximum value

signed short int 2 -32768 32767

unsigned short int 2 0 65535

signed int (16 bit) 2 -32768 32767

unsigned int (16 bit) 2 0 65535

signed int (32 bit) 4 -2147483648 2147483647

unsigned int (32 bit) 4 0 4294967295

signed long int 4 -2147483648 2147483647

unsigned long int 4 0 4294967295

Note: To provide flexibility across different hardware platforms, C has a library
function limits.h and float.h that contain the size information of integers and
floats.

A number with a decimal point.

C supports three floating point data type
float (Byte size 4) (f)
double (Byte size 8)
long double (Byte size 10) (L)

The default representation is double.

FLOATING POINT

Example:
0.0 7.231 3.1416 Double
-2.6f 3.232f 7.23123f float
3.121314123L 1.234234L long double

CHARACTER CONSTANT

Symbols are given numerical values.

Symbols represented in ASCII form

Numerical values range is 0 to 127.

Enclose between two single quotes

Special characters will have a back slash

(known as escape character).

‘A’ = 65; ‘Z’ = 90;

‘a’ = 97; ‘z’ = 122;

‘0’ = 48; ‘1’ = 49;

ESCAPE CHARACTERS

null character ‘\0’

alert ‘\a’

back space ‘\b’

horizontal tab ‘\t’

new line ‘\n’

vertical line ‘\v’

single quote ‘\’’

double quote ‘\”’

back slash ‘\\’

ASCII Character Code

0 ct1 15 ctO 30 ct= 45 - 60 < 75 K 90 Z 105 i 120 x

1 ctA 16 ctP 31 ct- 46 . 61 = 76 L 91 [106 j 121 y

2 ctB 17 ctQ 32 Sp 47 / 62 > 77 M 92 \ 107 k 122 z

3 ctC 18 ctR 33 ! 48 0 63 ? 78 N 93] 108 l 123 {

4 ctD 19 ctS 34 “ 49 1 64 @ 79 O 94 ^ 109 m 124 /

5 ctE 20 ctT 35 # 50 2 65 A 80 P 95 _ 110 n 125 }

6 ctF 21 ctU 36 $ 51 3 66 B 81 Q 96 ` 111 o 126 ~

7 ctG 22 ctV 37 % 52 4 67 C 82 R 97 a 112 p 127 del

8 ctH 23 ctW 38 & 53 5 68 D 83 S 98 b 113 q

9 ctI 24 ctX 39 ‘ 54 6 69 E 84 T 99 c 114 r

10 ctJ 25 ctY 40 (55 7 70 F 85 U 100 d 115 s

11 ctK 26 ctZ 41) 56 8 71 G 86 V 101 e 116 t

12 ctL 27 Esc 42 * 57 9 72 H 87 W 102 f 117 u

13 Ret 28 ct< 43 + 58 : 73 I 88 X 103 g 118 v

14 ctN 29 ct/ 44 , 59 ; 74 J 89 Y 104 h 119 w

STRING CONSTANTS

A string constant is a sequence of zero or more characters

enclosed in double quotes.

EXAMPLE:

“”

“A”

“UniMAP”

“GOOD DAY”

Note: ‘A’ and “A” are different

Data Type Memory

(Bytes)

Range Format

Specifier

Constant

Char 1 -128 to 127 %c ‘c’

Signed Char 1 -128 to 127 %c ‘c’

Unsigned Char 1 0 to 255 %c ‘c’

Short int 2 -32768 to 32767 %d 12

Unsigned short

int

2 0 to 65535 %d 12U

Int 4 -2147483648 to 2147483647 %ld 12

Unsigned int 4 0 to 4294967295 %lu 12U

Long int 4 -2147483648 to 2147483647 %ld 1234L

Unsigned long

int

4 0 to 4294967295 %lu 1234LU

float 4 -3.4e-38 to 3.4 e38 %f %e 12.3f

double 8 -1.7e-308 to 1.7e308 %le %LG 1.23e-23

Long double 8

10

-1.7e-308 to 1.7e308

-1.7e-4932 to 1.7 e 4932

%le %LG

%le %LG

12.3e-303L

12.3e-1303L

To know the memory size of a data type, sizeof operator can be used.

Example: sizeof(char) will give the size of a character data
sizeof(int) will give the size of a integer data

To know the maximum and minimum data values use the named constants available
in the file limits.h and float.h

Example: THE max and min values are available in the following named constants.
CHAR_MAX, CHAR_MIN, UCHAR_MAX, SHRT_MAX, SHRT_MIN, USHRT_MAX,
LONG_MAX, LONG_MIN, ULONG_MAX, INT_MAX, INT_MIN, UINT_MAX, FLT_MAX,
FLT_MIN, DBL_MAX, DBL_MIN

LOGICAL DATA TYPE

Represents only two values namely True and False.

In ‘C’ zero represents false and any non zero value

represents true.

VARIABLES

Variable are named memory locations, which stores values that

are going to change during the execution of a program.

Every variable must be declared before assigning a value.

char c;

int num;

float cost;

EXAMPLE

Cx

32767

88.777 cost

num

One Byte size

Four byte size

4 Byte size

NOTE A variable can not be of type void.

Variable initialization:

A variable can be assigned a value while declaring them

EXAMPLE

int i = 50;

char c = ‘A’;

float x = 20.1;

50 i

65 c

20.1 x

Type declaration:

General Syntax of a Type Declaration Statement:

data_type data_list;

signed short int

unsigned short int

short int

signed int

int

unsigned int

signed long int

unsigned long int

long int

float

double

long double

char

void

Variable names

separated by

commas

data_type

Example:

int length, width, height ;

data list

data_type

Example 1:

int length, width, height ;

data list

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

length

width

height

1 Byte

data_type

Example 2:

float base, height, area;

data list

1 Byte

data_type

Example 3:

char letter, code;

data list

1000

1001

letter
code

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

base

height

area

1 Byte

short int i,j,k;

int m,n;

long int p,q;

unsigned short int u1,u2;

unsigned int m1,m2;

unsigned long int v1,v2,v3;

char letter1, letter2;

float sum,cost,rate;

double phi,charge;

long double ratio,mass,speed;

EXAMPLE

Preprocessor DirectivesPre Compiler

directives

Global Declarations Visible

Globally

void main(void)

{

Local Declarations

Statements

}

Function Beginning

Function end

Structure of a C Program

A SIMPLE PROGRAM

#include<stdio.h>

/*preprocessor*/

/* main function declaration */

void main (void)

{

/* beginning of main */

printf(“Welcome to UniMAP\n”);

}

/* end of main */

Every C program has a primary function that must be assigned
the name ‘main’.

The name ‘main’ can not be altered by you.

The C compiler needs to know where execution is to begin.
‘main’ is the first function to be executed.

main function

Comments are notes describing what a particular portion of your
program does and how it does it does.

Comments make the program more readable and it is an important
part of documentation.

Text that are written between the starting symbol pair /* and the
ending symbol pair */ forms a comment and it will be ignored by the
compiler.

There should not be any blank space between / and *. The /* and */
form a couple, but they need not be on the same line.

Comment statement

A comment statement can start at any column and may continue to

another line also.

A comment line can be written in the very first line of a program or

on the very last line of a program.

Normally, most of the C compilers treat comment like a single

white space. Therefore, a comment is placed wherever a white

space is allowed to be placed.

Comment Statement Examples:

/* This is a comment */

/ *This is not a comment /

void /*comment*/ main(void)

printf /* comment */ (“UMS”);

printf(/*can not place comment like this */);

#include</*not a valid comment*/stdlib.h>

FORMATED INPUT/OUTPUT FUNCTIONS

A C program accepts data or output the result only through a file.

The keyboard is considered as the standard input file. The monitor is
considered as the standard output file.

When we enter a data on the keyboard, the C program receives them.

Everything entered into the C program through the keyboard must be
in the form of a sequence of characters.

The standard input file is buffered.

ie. The data are stored into a temporary memory location till the

return key is pressed.

The C program formatting instructions then interpret the sequence

of characters into appropriate form.

scanf()

scanf() function is used to format the input sequence of characters.

KEYBOARD

MEMORY

scanf()

printf()

MONITOR

BUFFER

BUFFER

printf()

The printf() function is used to convert the binary and text data
stored in the memory into user readable formatted data.

printf() function requires the following parameters:

Instructions for formatting the data (also known as format string)
The actual data to be printed (also known as data list).

printf (“format string” , data list) ;

function name

contains format specifiers

expressions or variable names

statement terminator - semi colon

function denoted by ()

printf(format string, data list);

General syntax of printf ()

The format string is enclosed in a set of double quotation marks.

The format string contains the text data to be printed and
instructions for formatting the data.

The instructions for formatting the data are specified by field
specifiers.

Each field specification begins with a percent sign (%).

FIELD SPECIFIER

1. a percent sign token ,
2. a conversion code ,
3. optional modifier namely

(i) flag
(ii) minimum width
(iii) precision
(iv) size.

The conversion code specifies the data type. There are 30
different conversion codes.

The general form of a field specifier is

%<flag><minimum width><precision><size>conversion_code

optional

CONVERSION CODE

Char – c

float – f

float scientific – e

double - lf

integer – d

long integer-ld

unsigned – u

long unsigned- lu

octal – o

hexadecimal – x or X

string – s

The size is used to modify the type specified by the conversion

code.

SIZE REPRESENTATION

h – used with integer to represent short integer.

l – used with integer to represent long integer.

L – used with float to represent long double

The width modifier is used to specify the minimum number of
positions in the output.

If the data require more spaces the printf() will override the width
modifier.

The width modifier is used to align the output in columns.

If we don’t use the width modifier, each output will take just enough
room for the data.

Size Code Type Example

None c Char %c

h d short int %hd

None d int %d

l d long int %ld

None f float %f

None f double %f

L f Long double %Lf

Value %d %4d

12 12 BB12

123 123 B123

1234 1234 1234

12345 12345 12345

1.The precision modifier is used to specify the number of decimal

places.

2.The precision modifier has the following format:

.m

where m represents the number of decimal digits.

3.If the precision modifier is not specified

then printf() prints six decimal positions.

Precision modifier

When both width and precision are specified, the width must be

large enough to contain the integral value of the number, the decimal

point and the number of digits in the decimal position.

Field Specifier Meaning

%2hd Short integer minimum 2 print positions

%4d Integer 4 print positions

%8ld Long Integer 8 positions

%7.2f Float 7 print positions, nnnn.nn

%10.3L Long double 10 positions,

nnnnnn.nnn

EXAMPLE

Flag is used for two print modifications.

If the flag is a minus sign, then the data are formatted as left

justified.

If the flag is zero and there is width specification, the number will

be printed with leading zeros.

Flag

Field specifier Meaning

%-8d Integer 8 print positions,
left justify

%08d Integer 8 print positions
with leading zeros

Example 1:

printf(“%d%f%c”,123,4.56,’a’);

1234.560000a

Example 2:

printf(“%d %f %c”,123,4.56,’a’);

123 4.560000 a

Example 3:

printf(“%5d%7.2f”,123,4.56);

bb123bbb4.56

Example 6:
printf(“The cost of pen is %4.2f”,3.20);
The cost of pen is 3.20

Example 7:

printf(“Good Morning Class”);

Good Morning Class

Example 4:

printf(“Transformers”);

Transformers

Example 5:

printf(“My age is %d”,21);

My age is 21

Example 8:

printf(“Good\n\Morning\nClass”);

Good

Morning

Class

Example 9:

Printf(“Good\t\Morning\nClass”);

Good Morning

Class

Example 10:

Printf(“%06d\t%2hd”,22,22);

000022 22

scanf() function

scanf() is used to read the data supplied by the user and to transfer

them to the variable names.

The general syntax of scanf function is:

scanf(format string, address list);

scanf() requires that the variables in the address list be represented

by their addresses. To specify an address, you prefix the variable

name with the address operator, the ampersand (&).

Example:

To read the following data: 214 156 14z

scanf(“%d%d%d%c”,&a,&b,&c,&d);

The ‘scanf’ function allows the user to enter the data through the

standard input (keyboard), formats the data entered and assign

them to variables.

Keyboard

Buffer

1 2 3 . 4 H
12

3.4

1500

1501

1502

1503

1504

1505

1506

Address Data

scanf(“%d %f %c”, &a, &b &c)

a

b

c
H

The general form a ‘scanf’ function is

scanf(“format string” , argument address list);

The format string determines how the ‘scanf’ function reads

information into the variables pointed by the argument address list.

The format string contains format specifiers that must match in order

with the arguments type. The number of format specifers must be

equal to the number of addresses in the address list. The ‘scanf’

functions returns the number of fields assigned values. If an error

occurs before any assignments are made, EOF (end of file) is

returned.

A field specifier must begin with a percentage sign. A field speciifer

must have a conversion code. With a few exceptions, the conversion

code used in a ‘printf’ function is used in the ‘scanf’ function also.

The general form of a format specifier is shown below

The conversion codes are used to interpret the data value keyed in by

the users and store them in the variable names. For example, a ‘%c’

field specifier specifies that the input data has to be interpreted as a

character.

Data type Conversion code
Char c
short int
int
long int

d

unsigned int
unsigned short int
unsigned long int

u

short-octal
int-octal
long-octal

o

short-hexadecimal
int-hexadecimal
long-hexadecimal

x, X

float
double
long double

f

float-scientific
double-scientific
long double-scientific

e, E, g, G

String s
Pointer p

When a user enters data, the data values are buffered in the input

stream.

The ‘scanf’ function reads the sequence of characters stored in the

buffer and interprets them using the format specifier.

Except for a character field specifier ‘%c’, the scanf function skips

all the leading white spaces, tabs or new-lines from the input

stream.

If the conversion code is of character type, then the scanf function

reads one character. This may be any character including white

space. While reading a character data and to skip the leading white

space a blank space is always included before the character field

specification (example “ %c”).

If the conversion code is of type numerical (‘%d’ , ‘%f’, ‘%e’), and

the format specifier has no width specifier, the ‘scanf’ function

reads the numeric data until it finds a trailing white space.

If the conversion code is of type numerical (‘%d’ , ‘%f’, ‘%e’), and

the format specifier has a width specifier, the ‘scanf’ function reads

the numeric data until the maximum number of numerical digits as

specified in the maximum width –specifier has been reached or if it

finds a white space character.

If the ‘scanf’ finds a white space before the maximum number of

numeric digits are processed, it stops.

The user can stop a ‘scanf’ function by signaling that there is no

more input to process by keying end of file (EOF). The user can also

signal the EOF by using ‘ctrl + z’ in microcomputers or using ‘ctrl

+ d’ in Unix and Apple machines.

If a ‘scanf’ encounters any invalid character, when it is trying to

convert the input to the stored data type, it stops. For example, if the

scanf encounters an alphabetical character when it is trying to read a

numerical value, it stops.

When reading a numerical data, the ‘scanf’ can encounter a plus

sign or a minus sign, numerical digits and one decimal point. If the

‘scanf’ function encounters any other character, it will cause an error.

The second argument in the ‘scanf’ function is an address list.

We have already seen that each and every memory location has an

address and using a type declaration statement we have also attached a

name to it. The name is referred as a variable name. Address operator

‘&’ is used to get the address associated to a variable name. For

example if ‘count’ is a variable name and prefixing a ‘&’ symbol to

the variable name, &count is the address.

The following section contains several

examples on ‘scanf’ functions.

1. To read integer values

int a,b,c;

scanf(“%d%d%d”,&a,&b&c);

When the user enters the following input

on a single

1234b56b7

then ‘a’ will be assigned with the value

1234, the variable ‘b’ will be assigned with

56 and c will be assigned with the value 7.

The same result will occur if the user

enters the three data on three different lines

as

1234

56

7

1234

56

7

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

a

b

c

1 Byte

Address

2. A leading white space is required to read a character. Consider

the following example.

int a;

char c;

scanf(“%d%c”,&a,&c);

a. If the user enters the following data as: 1234bx

Then the variable ‘a’ will be assigned with 1234 and a white space

character is assigned to c.

b. If the user enters as: 1234x

The variable ‘a’ is assigned with 1234 and the variable c will be

assigned with ‘x’.

NOTE:

NO BLANK SPACE

c. If the user enters the data as

1234bx

The variable ‘a’ is assigned with 1234 and the variable c will be

assigned with ‘x’.

The ‘scanf’ function shown above is modified as

scanf(“%d %c”,&a,&c);

Note the blank space

3. To read an integer, float and a character type data

int a;

float f;

char c;

scanf(“%d %f %c”,&a,&f,&c);

printf(“%d %f %c:,a,f,c);

If the user enters the following data

12 34.435 A

The output of the program fragment is

12b34.435000bA

4. To read data using a format specifier that has a maximum width

specifier

int a;

float f1,f2;

scanf(“%3d%5f%5f”,&a,&f1,&f2);

printf(“%d b%f b%f\n”,a,f1,f2);

If the user enters the following data

12312.3412.34

the ‘printf’ functions prints the output as

123b12.340000b12.345000

5. If the number of field specifiers is more than the number of

addresses in the address list, the ‘scanf’ forces the user to input as

many data values as the number of field specifiers. After reading

the data, the system will indicate the null pointer assignment.

int a,b;

scanf(“%d%d%d”,&a,&b);

The ‘scanf’ will force the user to input three values and as it is not

possible to assign all the three values, it will give an error

message as a “Null pointer assignment”.

Write a program that prompts the user to enter four integer

numbers and print them horizontally and vertically.

#include<stdio.h>

int main(void)

{

int a, b, c, d;

printf(“Please enter four numbers “);

scanf(“%d %d %d %d”,&a,&b,&c,&d);

printf(“\nYou have entered \n”);

printf(“%d %d %d %d\n”,a,b,c,d);

printf(“\nThe numbers are printed vertically\n”);

printf(“%d\n%d\n%d\n%d\n”,a,b,c,d);

return 0;

}

A sample run of the above program

is shown below.

Please enter four numbers 12 345

6789 123

You have entered

12b345b6789b123

The numbers are printed vertically

12

345

6789

123

Write a program in C that prompts the user to enter the length, breadth and height of a

room. The program should accept the data keyed in by the user and displays them

with appropriate messages.

/* Program to Read and Display room dimensions */

int main(void)

{

float length, breadth, height;

printf(“Enter the length of the room “);

scanf(“%f”, &length);

printf(“Enter the breadth of the room “);

scanf(“%f”,& breadth);

printf(“Enter the height of the room “);

scanf(“%f”, &height);

printf(“\nRoom Dimensions \n”);

printf(“Length = %.2f\n”, length);

printf(“Breadth = %.2f\n”, breadth);

printf(“Height = %.2f\n”, height);

return 0;

}

A sample run of the above program is shown below.

Enter the length of the room 10.23

Enter the breadth of the room 6.0

Enter the height of the room 5.12

Room Dimensions

Length = 10.23

Breadth = 6.00

Height = 5.12

Write a program in C that prompts the user to enter the three sides of a triangle. The

program should accept the data keyed in by the user and displays them with

appropriate messages. Further, the program must compute and display the area of the

triangle.

/* Program to Compute Area of a triangle*/

int main(void)

{

float side1, side2, side 3, s, area;

printf(“Enter the three sides ”);

scanf(“%f%f%f”, &side1, &side2, &side3);

s = (side1+side2+side3)/2.0;

area = sqrt(s((s-side1)*(s-side2)*(s-side3));

printf(The three sides are %f\t\%f\t%f\n”, side1, side2, side3);

printf(“The area is %f\n”, area);

return 0;

}

Thank You

